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We present results from an extensive study of fluctuation phenomena in superconducting nanowires made
from sputtered NbN. Nanoscale wires were fabricated in form of a meander and operated at a constant
temperature T�0.4Tc�0�. The superconducting state is driven close to the electronic phase transition by a high
bias current near the critical one. Fluctuations of sufficient strength temporarily drive a section of the meander
structure into the normal-conducting state, which can be registered as a voltage pulse of nanosecond duration.
We considered three different models �vortex-antivortex pairs, vortex edge barriers, and phase-slip centers� to
explain the experimental data. Only thermally excited vortices, either via unbinding of vortex-antivortex pairs
or vortices overcoming the edge barrier, lead to a satisfactory and consistent description for all measurements.
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I. INTRODUCTION

Thermodynamic fluctuations in superconductors have
been studied for many decades because they influence all
properties of a superconductor, e.g., conductivity, suscepti-
bility, and specific heat,1 and allow deep insights into very
basic aspects of the underlying physics.2–4 In particular in
one-dimensional �1D� and two-dimensional �2D� systems
thermodynamic fluctuations play an important role leading to
a rounding of the electronic phase transition even in very
clean and homogeneous samples. The conductivity of one-
and two-dimensional superconductors is particularly well un-
derstood, and detailed theories exist allowing an accurate
description of many observed effects. Examples are the para-
conductivity above the critical temperature Tc�0� with dis-
tinct temperature dependences according to the dimensional-
ity of the system,5–7 the nonvanishing resistance below Tc�0�
described by a Berezinskii-Kosterlitz-Thouless �BKT� phase
transition in 2D films8–11 or the existence of phase-slip cen-
ters in 1D wires.12–15

Thermodynamic fluctuations are most easily observed
near the phase transition. Therefore most experimental stud-
ies are done in a temperature range close to Tc�0�. At lower
temperatures the probability of thermodynamic fluctuations
drops exponentially so that they are experimentally no longer
observable far below the transition temperature. However,
the freezing out of thermal fluctuations opens up the possi-
bility to observe quantum fluctuations that prevail in the limit
T=0, for example, quantum phase slips.16

Although well-defined one- and two-dimensional systems
have been studied in great detail, the crossover region be-
tween these limiting cases is less understood. This situation
is just beginning to change as the size of superconducting
conduction paths of devices such as superconducting quan-
tum interference devices or quantum detectors is continually

decreasing, and therefore a better understanding of supercon-
ducting structures that are in between the limiting dimen-
sions is required.

In one-dimensional wires, where both transverse dimen-
sions are of the order or smaller than the shortest relevant
length scale �i.e., the coherence length �� and only the lon-
gitudinal dimension in the direction of an applied bias cur-
rent Ib is much larger, fluctuations can stimulate phase-slip
centers, either thermally or quantum mechanically. Increas-
ing one transverse direction, the width w, and keeping the
thickness d small, one opens up new excitation possibilities.
It has been shown17 that magnetic vortices, in two-
dimensional superconductors, can exist as soon as w�4.4�.
However, before magnetic vortices can enter such a super-
conducting strip, either due to an externally applied magnetic
field or to the magnetic self-field caused by Ib, they have to
overcome an edge barrier18 similar to the Bean-Livingston
barrier19 for three-dimensional, macroscopic superconduct-
ors. Interestingly, the critical width of about 4.4� for the
crossover from one to two-dimensional behavior has been
recently confirmed by a numerical comparison between the
excitation energies for phase-slip centers and vortex excita-
tions over the edge barrier.20

In this paper we study the effect of thermal fluctuations in
long superconducting NbN meanders with strip widths rang-
ing from about 12 to 38 times the coherence length. These
kinds of structures are used to realize superconducting nano-
wire single-photon detectors.21 They are operated at an Ib
close to the experimental critical current Ic,e and are sensitive
in the visible and near-infrared spectral range �3.1–0.4 eV�. It
is generally believed that fluctuations are the major source of
dark-count events in these detectors.22–24 Measuring the
dark-count rate thus gives us direct information about the
fluctuation rates in a part of the superconducting phase dia-
gram that is otherwise not easily accessible. The commonly
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used approach23 to measure the dc resistance that is then
used to infer the fluctuation rate is not appropriate at large
bias currents close to the experimental critical current Ic,e
since the Joule heating cannot be eliminated. By contrast,
Joule heating may influence the amplitude and duration of
individual voltage transients in our time-resolved measure-
ments but it does not affect the count rate as long as it re-
mains small compared to the reciprocal transient duration.

In the present study we have measured the dark-count
rates for three meanders with equal thickness but different
strip widths at a constant temperature of about 0.4Tc�0� as a
function of the applied bias current. In the following section
we will describe details of the sample preparation and the
characterization of the superconducting state. In Sec. III we
present time-resolved measurements of fluctuation rates and
in Sec. IV mathematical models are discussed where we con-
sider the current-assisted thermal breakup of vortex-
antivortex pairs �VAP�, vortices overcoming the edge-barrier,
and phase-slip events as possible fluctuation origins.

II. SAMPLE CHARACTERIZATION

A. Nanoscale sample fabrication

The superconducting NbN films were deposited by dc-
reactive magnetron sputtering of a pure Nb target in an Ar
+N2 gas mixture, at a total pressure of about 10−3 mbar. The
epipolished R-plane sapphire substrates were kept at 750 °C
during the film growth. The thickness d of the resulting film
was inferred from the sputtering time and a predetermined
deposition rate of 0.17 nm/s. The film growth was optimized
with respect to the partial pressure of N2 and the deposition
rate to provide the highest transition temperature for the
studied 6-nm-high NbN films. More details about the film
growth have been published previously.25

The freshly deposited films were structured into a nano-
scale meander by a combination of electron-beam lithogra-
phy and reactive ion etching in a SF6 /Ar plasma discharge
created by an applied radiofrequency power. The plasma was
operated at low microwave power in order to minimize dam-
ages from ion bombardment and low pressure to ensure ver-
tical bombardment during etching.26 The three samples in-
vestigated had widths of the conduction path of 53 nm
�sample 1�, 83 nm �sample 2�, and 171 nm �sample 3�, re-
spectively. In Fig. 1 we show an electrograph of a clone of
sample 1 having a filling factor FF of 16%. The filling factor
is defined as the fraction the conduction path covers with
respect to the whole area of the structure. The geometrical
dimensions of the meanders were determined from such pic-
tures taken with a scanning electron microscope �SEM�. The
samples for the measurements were fabricated with exactly
the same process parameters as the meanders for the SEM
characterization, therefore we expect them to show the same
path width within an uncertainty of about 2 nm. The film
height as expected from the sputtering rate multiplied by the
deposition time was confirmed with an atomic force micro-
scope �AFM�.

After film growth and nanopatterning, the exposure to air
of the NbN leads to an oxidization of surface and edge layers
and to a suppression of superconductivity within these lay-

ers, which will influence the superconducting core of the
conduction paths via the superconducting proximity effect.27

Therefore, we used reduced values for the quantitative analy-
sis of the experimental data, i.e., we subtracted 5 nm from
the width determined with the SEM and 1 nm from the
height determined with the AFM.

Electrical connections to the bond pads were made using
contact photolithographic methods. The bond pads were con-
nected to the printed circuit board of the measurement setup
using a wedge wire bonder. Our layout allows for four-probe
electronic-transport measurements, which is important for a
reliable determination of material parameters as discussed in
the following. In principle, our versatile GDSII design al-
lows for the generation of more than 1000 devices with in-
dividual nanoscale dimensions on a 2� wafer and to intercon-
nect them electronically.28

B. Resistivity measurements and electronic parameters

The meander structures used in this study have been char-
acterized with respect to their normal-state and supercon-
ducting properties. We will describe below the mathematical
formalism that allows us to extract material parameters from
the measured data. The thus obtained material parameters
served as input parameters for the theoretical models describ-
ing the measured current-induced fluctuations discussed in
the next section and to reduce the number of free parameters.

The transport measurements were done at low current Ib
�500 nA in a physical property measurement system from
Quantum Design in various magnetic fields B up to 9 T
perpendicular to the film surface. The temperature depen-
dence of the experimental critical current Ic,e�T� in zero mag-
netic field was obtained using a voltage criterion V
�10 mV with a voltage of �1 V in the normal-conducting
state. We calculated the square resistance RS�T�=R�T�
� L

w + N
2 �−1 of each structure because it requires the SEM-

measured input parameters which are less erroneous than the
AFM-measured film height necessary for the calculation of
the specific resistance. Here L is the entire length of the

FIG. 1. �Color online� Electrograph of the nanoscale meander
with the smallest conduction path. After electron-beam lithography
the structure was protected while a reactive plasma etched 8 nm
into a 10-nm-high NbN film deposited onto the Al2O3 substrate.
The remaining 2 nm NbN ensures the drain of the electrons from
the scanning beam during electrography and therefore eliminates
charging effects during the scan. bI=2aI was set for scaling
purposes.
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nanowire and N is the number of islands connecting the
strips. For the critical-current measurements, the respective
current-voltage �I-V� curves were taken at a fixed tempera-
ture.

A rather small electron mean-free path l �Ref. 29� is char-
acteristic for our NbN films, putting them into the dirty limit
l�� but still far from the metal-insulator transition as deter-
mined by the Ioffe-Regel criterion.30 The electronic transi-
tion of nanoscale superconductors is usually rounded by ther-
mal fluctuations on the order of kBT leading to
paraconductive effects in the normal-conducting state. The
temperature dependence of the resistance data RS�T� reflects
the dimensionality of the superconductor. The critical tem-
perature in zero magnetic field Tc�0� and the square resis-
tance in the metallic state RSN were evaluated by least-
squares fitting of the experimental data of RS�T� using a
Cooper-pair fluctuation model developed for two-
dimensional superconducting systems5

RS�T� =
RSN

1 + RSNC
1

16

e2

�

1

t − 1

, t =
T

Tc�0�
, T � Tc�0�

�1�

�see Table I, Fig. 2�. Here � is the reduced Planck constant, e
is the elementary charge, and C is a fitting parameter with
C=1 in an ideal system. We used the resistance data in the
range 0.9RSN�RS�T��RSN �t�1.13� as the input data for
the fitting procedure. We have set RSN=RS�22 K� as RS�T�
only weakly depends on T right above the transition region.
The resulting fit describes the measured resistance data very
well down to about 0.5RSN or t�1.014, respectively. The
fitting parameter C turned out to be �2 for all samples
investigated.

Fitting analogous theoretical predictions for one-
dimensional and three-dimensional superconductors32 to our
data, however, resulted in a deviation of the fit from the
experimental data immediately outside the data interval used
for the fitting and the constant C deviated about 1 order of
magnitude from its ideal value.

Therefore we conclude that even the structure with the
narrowest conduction path is indeed a 2D system as one
would expect from the ratio of d /��0� and w /��0� �see Table
I�. Further support for the two-dimensional character of our
films comes from the inset of Fig. 2. Here �RS

−1�T�−RSN
−1 �−1 is

plotted as a function of T. The linear T dependence of the
data well above Tc�0� is only compatible with a 2D

fluctuation-conductivity formula described by Eq. �1� and in-
compatible with its one-dimensional and three-dimensional
counterparts.

The critical temperatures Tc�B� and the upper critical
fields Bc2 were determined using a 50% resistance criterion.
This criterion allowed us to determine the T-dependent mag-
netically induced phase-transition line Bc2�T�=�0Hc2�T�
with �0 the permeability of the vacuum. As shown in Fig. 3,
the upper critical field is to a very good approximation linear
in temperature as expected from Ginzburg-Landau �GL�
theory in the vicinity of Tc�0�.

The dark-counts triggered by thermal fluctuations were
measured at a constant temperature of �0.4Tc�0� which is
well below the validity range of the usual GL �Refs. 33 and
34� approximations. To avoid the use of the exact but com-
plicated T dependences of physical quantities that can be
derived from microscopic theories,35,36 we have used simple
analytical expressions to approximate the real temperature
dependences of these quantities as described below.

From the slope of the upper critical field Bc2�T� close to
Tc�0�, we determined the diffusivity of the quasiparticles in
the normal-conducting state �see also Appendix in Ref. 29�

TABLE I. Material parameters of the investigated structures. The geometric dimensions were determined using SEM and AFM tech-
niques. The formalism for determining the other material parameters is discussed in Sec. II. For the modeling of the data, the width w has
been reduced by 5 nm and the thickness d by 1 nm as justified in the text.

Sample
w

�nm�
L

��m�
d

�nm� N FF
RSN

���
Tc�0�
�K�

TBKT

�K� 	BKT

Ic,e

��A�
D

�nm2 /ps�
DOS�EF�

�1047
m−3 J−1�
��0�

�meV�
��0�
�nm�

��0�
�nm�

�0�
��m�

1 53.4 73.9 6 12 0.16 445 12.73 10.85 9.3 14.5 48.7 3.6 2.3 4.0 403.5 65.1

2 82.9 145.1 6 26 0.51 393 12.37 10.63 9.9 24.4 52.8 3.7 2.2 4.2 384.7 59.2

3 170.6 141.4 6 12 0.23 431 12.63 10.72 9.8 54.5 54.4 3.3 2.3 4.3 399.0 63.7

FIG. 2. �Color online� Transition into superconductivity mea-
sured in transport measurements on a logarithmic scale. Resistance
data above the phase transition can be well described by fluctuation
conductivity �Eq. �1�, right fit curve�. The inset shows an appropri-
ate representation of the data to extract Tc�0� from the resistivity
measurements Ref. 31�. Below Tc�0� the resistance data follow the
expectations for BKT phase transition of VAPs over many orders of
magnitude in resistivity �Eq. �12�, left fit curve�.
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D = −
4kB

�e
�dBc2�T�

dT
�

T=Tc�0�

−1

�2�

with kB Boltzmann constant. Using Einstein relation37,38

DOS�EF� =
1

�e2�ND�
�3�

we determined the total electronic density of states �DOS� at
the Fermi level, where �N=RSNd is the normal-state resistiv-
ity. This quantity is directly related to Sommerfeld’s constant
�e=1 /3�2kB

2 DOS�EF�=220 J/K2 m3 �averaged over all three
samples�, which is consistent with the specific-heat data ob-
tained on standard NbN films used for thermal detector
applications.39–42

Within the framework of the GL theory, Bc2�T� is related
to the magnetic-flux quantum, �0=h /2e�2.07
10−15 Vs
and to the temperature-dependent coherence length ��T� by

Bc2�T� =
�0

2���T�2 . �4�

From a linear extrapolation of Bc2�T� to zero temperature
one obtains the zero-temperature GL coherence length
�GL�0�. It was shown43–45 that a realistic value for the true
upper critical field Bc2�0� of dirty superconductors can be
obtained by multiplying the extrapolated value with 0.69. In
order to model the full temperature dependence of the true
coherence length ��T� we used an analytical formula that
approximates Werthammers T=0 result and includes the GL
dependence near Tc�0�

�2�t� = �2�0��1 − t�−1�1 + t�−0.5, �2�0� = 	2�GL
2 �0� . �5�

NbN is a strongly coupled superconductor. Therefore, we
express the zero-temperature energy gap by the experimen-
tally determined relation ��0�=2.08kBTc�0�.46 The tempera-
ture dependence of the gap is modeled by the approximate
formula47

��t�
��0�

= tanh
1.82�1.018
1

t
− 1��0.51� . �6�

This formula virtually coincides with the numerical values of
Mühlschlegel.36

The magnetic penetration depth ��0� can be expressed in
the dirty limit as ��0�= ���N /��0��0��0.5. Its temperature
dependence is given by �Eq. 3.134 in Ref. 34�

��T�
��0�

= ���T�
��0�

tanh���T�
2kBT

�−0.5

. �7�

In order to keep the models to be explained in Sec. IV as
simple as possible, we use instead an analytic approximation
for the temperature dependence of the penetration depth

��t�
��0�

= �1 − t2�−0.5�1 + t1.5�−0.25. �8�

For practical purposes Eqs. �7� and �8� again virtually coin-
cide. The effective penetration depth in thin films with d
�� �Ref. 48� is then

�T� =
2�2�T�

d
. �9�

This quantity is about 170 times larger than � for bulk NbN
and exceeds our samples’ dimensions for all temperatures.
Therefore the current-density distribution can be assumed to
be homogeneous at all temperatures, allowing for a straight-
forward determination of the critical current density from
current-voltage curves. In order to keep the explicit depen-
dence on the order parameter of the GL model, we used the
following expression for the depairing critical current in the
dirty limit:49

Ic,d�t� =
2	2� exp�2��

21��3�	3

���0��2

	kBTc�0�
w

eRSN
	D�


�1 − t2��1 − t4�1/2���Ib��2, �10�

which reduces to the conventional form �two-fluid model50�
on substituting the BCS relation between Tc�0� and ��0�.
Here �=0.577 is Euler’s constant and ��3�=1.202 is Apery’s
constant.

Our experimental critical currents Ic,e at T�0.4Tc�0� are
about 60% of the theoretical limit computed using Eq. �10�.
This is an indication of the excellent uniformity of the con-
duction paths of the present meander structures. Already a
small number of constrictions along the total length of the
meander would significantly limit the experimental critical
current whereas the material parameters entering Eq. �10� as
determined from resistivity measurements are not noticeably
affected by small variations in the cross-sectional area.

From the above analysis of the NbN meander structures
we conclude that our NbN films belong to the class of two-
dimensional, strongly coupled type-II superconductors with a
high square resistance RSN, which is only about one order of
magnitude smaller than the resistance quantum h /2e2

�13 k�. Therefore, one can expect to observe a pro-
nounced transition of the BKT type.8–11

FIG. 3. �Color online� Temperature dependence of the upper
critical field. The solid lines represent linear approximations of the
experimental data as described in the text.
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In thin films of this type it is very probable that thermal
fluctuations excite pairs of vortices. These pairs consist of
single vortices with the respective supercurrents circulating
in opposite directions and leading to a bound state called a
VAP. The necessary criterion for a BKT transition, where the
VAPs are starting to dissociate, is a logarithmic dependence
of the vortex interaction

U�r� = A�T�ln� r

��T�� + 2�C�T�, A�T� =
�0

2

��0�T�
�11�

from the distance of the vortex-core centers r���T�.51 Here
A�T� is the vortex interaction constant and �C�T� is the
vortex-core potential which is defined as half the free energy
of a pair at smallest separation. The necessary condition for a
BKT transition is fulfilled in our nanoscale NbN meanders
because the effective penetration depth is much larger than
the sample’s dimensions. Below the ordering temperature
TBKT, all VAPs are bound. Above TBKT VAPs breakup by
thermal fluctuations, and single vortices and VAPs coexist in
thermodynamic equilibrium. Therefore, if pinning is ne-
glected, the dissociated VAPs may move due to the Lorentz
force exerted by the probing current Ib and cause a finite
resistance in the temperature region TBKT�T�Tc�0� accord-
ing to51

��T� = a exp
− 2	b
Tc�0� − T

T − TBKT
� �12�

with a and b material dependent parameters used for fitting
our data. In Fig. 2, we show a least-squares fit to the experi-
mental data in this temperature interval from which we de-
termined TBKT �see Table I�. With the BMO relation �shown
by Beasley, Mooij, and Orlando �BMO� �Refs. 51 and 52��

TBKT

Tc�0�
=

1

1 + 0.173
	BKT

�
RSN

2e2

h

�13�

we also determined the polarizability 	BKT�10 of a VAP at
the BKT vortex phase transition in the presence of other
VAPs and successfully crosschecked it with the universal
relation kBTBKT=A�TBKT� /4	BKT for topological two-
dimensional phase transitions, shown by Nelson and
Kosterlitz.51,53

In Fig. 2 we show that the temperature dependence of
��T� follows qualitatively the behavior that one would expect
for finite-size BKT systems.51 In such systems thermally un-
bound VAPs can exist even below TBKT and lead to a resis-
tive tail for T→0.54 In Table I we have summarized the
material parameters from our analysis of the resistivity data
for the three samples investigated.

III. TIME-RESOLVED DETECTION OF FLUCTUATIONS

A. Pulse-detection setup

To measure time-resolved fluctuation effects the meanders
were thermally anchored to the cold plate of a 4He-bath cry-

ostat. The ambient temperature of the meander holder was
T�5.5 K under operating conditions. As the superconduct-
ing meanders are efficient single-photon detectors by design,
they were shielded against photons from blackbody radiation
with an Al foil that was also thermally connected to the cold
plate.

A bias current Ib was supplied by a custom-made, battery-
powered constant-voltage source to ensure a low noise. The
critical currents listed in Table I were measured using this
configuration. The bias current passed two low-pass filters.
One located at the top of the cryostat at room temperature
and the other one on a printed circuit board near the holder,
where it passed a bias tee and finally the nanoscale meander
structure. With an increase in Ib near the critical current, the
meanders approach the transition into the normal-conducting
state and become particularly sensitive to fluctuations or to
an externally deposited energy of any kind.

The fluctuation energy inside the meanders acts as a seed
for the formation of a normal-conducting domain which
again disappears on a timescale of a few hundred
picoseconds.55 Due to the finite kinetic inductance of the
system the resulting voltage pulses decay on a time scale that
is larger than the lifetime of the normal-conducting
domains.56 These pulses were passed to a high electron-
mobility transistor microwave-amplifier chain with an effec-
tive band width of 0.1–2 GHz and a total gain of 48 dB. The
amplified voltage signals were then fed with a 50 � coaxial
cable into the readout electronics that consisted of either a 6
GHz bandwidth single-shot digital oscilloscope �Wave Mas-
ter 8600 A from LeCroy�, or a 300 MHz bandwidth gated
voltage-level threshold counter �SR400 from Stanford Re-
search Systems�.

B. Measured fluctuation rates

In Fig. 4 we present the measured fluctuation rates � as a
function of Ib for the structures characterized by the transport
measurements as described in the previous section. The data

FIG. 4. �Color online� Measured fluctuation rates �see Sec. III�
and their description within the theoretical models discussed in Sec.
IV. The data are plotted on a logarithmic scale vs the normalized
bias current Ib.
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were modeled with the parameters of Table II according to
the scenarios described in the next section. Close to the ex-
perimental critical current Ic,e �Ib / Ic,e�1� the fluctuation
rates increase virtually linearly on a logarithmic scale as Ib
approaches Ic,e from below.

At lower bias currents, where the measured rates dropped
to about 10–1 Hz, the measured data deviate significantly
from the approximately exponential behavior, however. The
narrow structures with w�100 nm �samples 1 and 2� ex-
hibit a tail-like structure below Ib / Ic,e�0.88 with higher than
expected fluctuation rates. As we will discuss below, these
data can be quantitatively explained by the Lorentz-force-
induced motion of single, unbound vortices and antivortices
due to finite-size effects54 within the BKT model �see Sec.
IV A�. In the wider structure, by contrast, the fluctuation
rates decrease even faster than expected by a simple expo-
nential dependence which we cannot explain within the for-
malism of Sec. IV. However, we cannot exclude the possi-
bility that these deviations from the exponential behavior
below around 1 Hz originate from our electronic setup. The
lines drawn in Fig. 4 result from a fit to two established
theories that we will discuss in the next section, together
with an additional scenario invoking phase-slip phenomena.

IV. FLUCTUATION MODELS

For modeling the measured fluctuation rates we explicitly
include a current dependence of all relevant parameters char-
acterizing the superconducting state as they depend them-
selves on the current-dependent energy gap. In a previous
work,55 we precisely determined the bias-current dependence
of the kinetic inductance for structures similar to those in-
vestigated in this study. The kinetic inductance Lkin
=�0�2L /dw of a superconducting device is directly related
to the magnetic penetration depth, which in turn depends on
the energy gap �see Eq. �7��. A reasonable approximation for
the measured current-dependent kinetic inductance

��Ib� � ���T,Ib�
��T,0� �2

= �1 − 0.31� Ib

Ic,e�T��5/2−1/3

�14�

suggests a 13% increase in the undisturbed penetration depth
at the experimental critical current.

A. Unbinding of vortex-antivortex pairs

As outlined in Sec. II the logarithmic dependence of the
vortex interaction �see Eq. �11�� on the distance r of the

vortex-core centers is responsible for the topological break-
down of the ordered state in the vortex system at T�TBKT.
The presence of VAPs could in turn also have a profound
effect on the dynamics of the fluctuations, i.e., the fluctuation
rate. In the following, for simplicity we will first neglect any
finite-size effects �i.e., w��. Under this assumption all
thermally excited vortices and antivortices will be paired at
the operating temperature T�5.5 K�TBKT. The application
of a bias current Ib then exerts a Lorentz force that is directed
in opposite directions for the vortex and the antivortex, re-
spectively. The resulting torque leads to an orientation of the
VAPs perpendicular to the current direction and the pair is
pulled apart, thereby reducing the energy of the VAP. How-
ever, the current cannot pull apart the constituents to infinite
distance since the VAP self-energy grows logarithmically
with the separation r of its constituents. Consequently, by
increasing the bias current, the VAP pass through a minimum
binding energy �at r=2.6·��T�Ic,e�T� / Ib according to Ref. 51�
that can be calculated in a straightforward mathematical
variational calculus and reads

UVAP,m�T,Ib� =
A�T,Ib�

	
�ln
2.6Ic,e�T�

Ib
� − 1 +

Ib

2.6Ic,e�T�� ,

�15�

where 	 is the averaged polarizability of a VAP within the
entire VAP population.51 This binding energy may be over-
come by a thermal excitation with a probability equal to
Boltzmann’s factor exp�−UVAP,m /kBT�. We restrict the fol-
lowing discussion to this minimum binding energy. Pairs
with smaller or larger elongation will be unbound with, re-
spectively, lower probability.

Because of the very high bias currents we may also ne-
glect vortex-pinning effects. The thermally unbound vortices
will thus move freely towards opposite edges of the strip
where they will leave the structure or annihilate with an op-
positely orientated vortex. In either case, the moving vortices
will dissipate energy which initiates the creation of a normal-
conducting domain. Such domains cause voltage transients
that are then registered as dark-count events. It is straightfor-
ward to assume that the resulting corresponding dark-count
rate is proportional to the unbinding probability and there-
fore

TABLE II. Parameters for the fluctuation models that were used to fit the measured dark-count rates within the formalism developed in
Sec. IV. In the case of vortex tunneling and both phase-slip mechanisms, the given attempt rates � match the measured fluctuation rates at
Ib= Ic,e. T is the operation temperature assigned separately to each sample to fit the experimental data within the vortex-hopping scenario �see
text�. The listed polarizabilities 	 provide the best fit to the measured data within the VAP scenario. The excitation energies and all the model
parameters were calculated for zero-bias current �UVAP,m /kB for Ib=0.01Ic,e�.

Sample
T

�K�
UVAP,m /kB

�K� 	
IB

��A�
EB /kB

�K�
GB,max /kB

�K�
xB

�nm�
Tco

�K�
�FPS /kB

�K�
�VAP,m

�Hz�
�VH

�Hz�
�VT

�Hz�
�TPS

�Hz�
�QPS

�Hz�

1 5.7 3671.5 1.38 11.6 555.0 1027.3 46.0 0.6 2289.7 2.59E+24 3.77E+34 1.86E+140 3.00E+55 4.88E+35

2 5.7 4455.8 1.24 12.7 605.2 1374.5 75.4 0.3 3787.3 1.30E+28 2.56E+37 2.69E+197 2.05E+85 1.93E+60

3 4.5 4699.5 1.10 11.9 566.3 1707.3 163.1 0.1 7475.2 8.35E+35 9.83E+42 5.50E+206 3.02E+224 7.18E+256
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�VAP,m�T,Ib� = �VAP exp�− UVAP,m�T,Ib�/kBT� �16�

with �VAP as a proportionality constant with the meaning of
an attempt rate.

In the meanders with strip widths w� VAPs can be
thermally unbound even in the absence of a bias current �see
explanation of the resistive tail of Fig. 2 in Sec. II B�. The
corresponding density of unbound vortices and antivortices
will add a background of dark-count events since they will
also start to move under the action of the Lorentz force. The
density of free vortices in a strip with width w� can be
derived as following:51,54,57

nSV =
1

��T�2exp�−
A�T,Ib�

kBT
� 1

�0
+

lw

2	
��, lw = ln� w

��T��
�17�

and the background dark-count rate stemming from these
unbound vortices should be proportional to nSV according to

�SV�Ib,T� = �SVnSV �18�

with a proportionality constant �SV and again with a current-
dependence stemming from the current dependence of the
vortex interaction constant A.

Equation �17�, contains the vortex-core energy

�C�T,Ib� =
A�T,Ib�

�0
, �19�

where �0 is a parameter of order unity.
In a London-type model of a vortex, its core is approxi-

mated by a metallic cylinder with radius �. Using relative
simple algebra, one finds that the associated loss of conden-
sation energy inside the London vortex volume sets an upper
limit for �0�8.51 However, the dotted lines in Fig. 4 were
obtained by setting �0=4, 	=2.5, and 	=3.2 for sample 1
and sample 2, respectively.

B. Vortices overcoming the edge barrier

At bias currents close to the depairing critical current the
magnetic self-field at the strip edges is much larger than the
lower critical field Bc1 for vortex entry. The entry of vortices
at one edge and antivortices at the opposite edge is only
prohibited by an edge barrier very similar to the Bean-
Livingston surface barrier.19 The existence of such a barrier
results from the requirement of vanishing components of the
supercurrent encircling the vortex core that are normal to the
metal-vacuum interface. In the case of narrow strips, this
condition may be formally fulfilled by introducing an infinite
chain of mirror vortices and antivortices at both edges.18

In this picture, the interaction of the magnetic moment of
the vortex with the supercurrents of the virtual antivortices
leads to an effective attractive force towards the near edge of
the superconductor. The resulting Gibbs free energy in the
London limit, neglecting the finite size of the vortex core,
including the potential from a bias current for a single vortex
at a distance x from the edge and is given by18,58,59

G�T,Ib,x� = EB�T,Ib��ln� 2w

���T�
sin
�x

w
��

−
Ib

IB�T,Ib�
�

w
�x −

��T�
2
� �20�

with

IB�T,Ib� =
�0

2�0�T,Ib�
and EB�T,Ib� =

�0
2

2��0�T,Ib�
�21�

being current and energy scales, respectively. These quanti-
ties are bias-current dependent through their dependence on
the effective penetration depth. The first term of Eq. �20�
corresponds to the nucleation energy of the vortex while the
second term describes its interaction with the bias current.
An analogous potential can be derived for an antivortex en-
tering from the opposite edge. An additional term describing
the contribution due to an external magnetic field has been
neglected here. The earth magnetic field, which was not
shielded during our experiments, and the magnetic fields
from neighboring strips are of the same order of magnitude,
and their contribution is negligible compared to the other two
contributions included in Eq. �20�. The finite size of the vor-
tex core is neglected in the derivation of Eq. �20�, which
leads to a diverging free energy for x→0 and x→w. One has
to expect that the real potential a vortex experiences deviates
from the predictions of Eq. �20�, when it comes to within a
distance of about � to the edge.60 Due to the lack of detailed
theories of real vortex penetration into the strip, we arbi-
trarily set the vortex’ energy to zero at the position x
=��T� /2. As will be discussed later, the exact position for
which the Gibbs free energy is normalized to zero does not
change the physical picture.

The Gibb’s free energy as described by Eq. �20� is plotted
in Fig. 5 for all three samples in the absence of a bias current
and in addition for sample 1 for five different equidistant bias
currents between zero and Ic,e. It can be clearly seen that
there is an energy barrier for the vortex entry in all cases.
However, the height of this barrier as well as its width
shrinks with increasing bias current. It is a straightforward
analytical problem to determine the barrier height as a func-
tion of temperature and bias current �see Table II�

GB,max�T,Ib� = EB�T,Ib��ln� 2w

���T�
1

	1 + � Ib

IB�T,Ib��2�
−

Ib

IB�T,Ib��arctan� IB�T,Ib�
Ib

� −
���T�

2w
� .

�22�

The corresponding probability for thermally activated
hopping of a vortex over this energy barrier is proportional to
the Boltzmann factor of the barrier maximum. Once a vortex
jumped over the barrier it will move across the strip, agitated
by the Lorentz-force term of the potential. Like in the VAP
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scenario, the motion of the vortices across the strip creates a
normal-conducting domain and finally results in a voltage
transient. Because the magnetic self-field at the edges is pro-
portional to the bias current, we assume the attempt rate to
be linear in the bias current to a first approximation, and
arrive at an expression for the resulting dark-count rate origi-
nating from thermally activated vortex hopping as

�VH�Ib,T� = �VHIb exp�− GB,max�T,Ib�/kBT� �23�

with the constant �VH including the attempt rate and the
details of the geometry.

In the low-temperature limit T→0 the probability for
thermal fluctuations freeze-out exponentially and give way to
macroscopic quantum-mechanical tunneling.61 In this sce-
nario vortices can enter the superconducting strip by tunnel-
ing through the barrier of Eq. �20�. According to Tafuri et

al.62 the probability for such an event is exp�−�B
�xB

2

� �. The
barrier shape enters via the parameter �B of order unity, � is
the vortex drag coefficient within the Bardeen-Stephen
model for vortex motion,63 and xB is the width of the barrier
�see Fig. 5�. The barrier width can be calculated numerically
as the root of the Gibbs free-energy potential Eq. �20�. In
order to obtain the tunneling rate of vortices, one has to
multiply the tunneling probability with an attempt rate that
we assume to be proportional to the bias current, for the
same reasons as in the case of thermally activated vortex
hopping. The dark-count rate can then be expressed as

�VT�Ib,T� = �VTIb exp
− �B
� · xB

2

�
� �24�

again with an attempt rate �VT.

C. Phase-slip centers

In small superconducting wires with cross-sectional area
A=wd on the order of �2 fluctuations can lead to a nontrivial,

temporary local destruction of the order parameter accompa-
nied by a phase slip.12 These phase slips can lead to a ran-
dom succession of voltage pulses, possibly adding to the
observed dark-count rate.

A more quantitative picture of thermal phase slips was
developed by Langer and Ambegaokar13 and McCumber and
Halperin,15 and later confirmed in experiments carried out on
superconducting tin whiskers.64,65 McCumber14 deduced the
equivalence of this approach for current or voltage driven
power sources.

The phase-slip free-energy barrier can be derived in terms
of the condensation energy �equivalent to Eq. 8.4 in Ref. 34�

�FPS�T,Ib� =
8	2

3

Bc
2�T,Ib�
2�0

A��T� . �25�

Here Hc is the thermodynamic critical field. Equation �25�
has a clear physical interpretation: The required energy is
equal to the superconducting condensation energy contained
in a volume of the cross section of the wire, times the coher-
ence length up to a numerical factor stemming from the
variational derivation within the GL theoretical framework.
We modeled the thermodynamic critical field by the follow-
ing analytic formula:

Hc�T,Ib� = Hc�0,Ib��1 − t2��1 + t�−1/6 �26�

that virtually coincides with the numerical data of
Mühlschlegel.36 Using this analytical temperature depen-
dence of the critical field and the temperature dependence of
the coherence length of Eq. �5�, we can express the energy
barrier for phase-slip events as

�FPS�T,Ib� =
�2

6 exp�2��
kBTc�0�

h

2e2

1

RSN

w

��T�


�1 − t��1 + t�7/6���Ib��2 �27�

and express the parameters by more easily measurable quan-
tities.

A resistive phase-slip event can be interpreted as the fol-
lowing process: a driving voltage between two points that are
connected by a superconductor will induce a steady growth
of the absolute value for the phase � of the order parameter
according to the Josephson rate66

�̇ =
2eV

�
. �28�

In general, this requires a continuously increasing current.13

However, if fluctuations deposit energy in the interior of the
superconductor, a reduction in the phase difference �by a
backsnap of the phase by 2�� occurs at the same rate as the
voltage increases and a constant flow of charge can be main-
tained. The phase-slip rate then adjusts to �PS= 1

2��̇. The bias
current makes phase slippage in the direction antiparallel to
Ib more probable than in the direction parallel to the current.
The free-energy difference between these two possibilities
can be calculated to amount to �FPS= �h /2e�Ib.

Using again Boltzmann statistics �equivalent to Eq. 8.7 in
Ref. 34�, the thermally activated phase-slip rate becomes

FIG. 5. �Color online� Gibbs free-energy barrier for vortex en-
try, plotted against the relative coordinate perpendicular to the con-
duction path, for all three investigated samples. For the nanoscale
meander with the narrowest conduction path �sample 1�, the depen-
dence on the applied current is also shown. The barrier widths xB

relevant for quantum-mechanical tunneling of vortices are also
indicated.
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�TPS = �TPS exp�−
�FPS�T,Ib�

kBT
�sinh
−

�FPS

2kBT
� �29�

with the attempt frequency �TPS.
A quantum mechanism for the occurrence of such phase

slips �“quantum phase slips,” QPS� has also been
suggested.67,68 One obtains a reasonable approximation for
their probability by replacing the thermal energy scale kBT
by the appropriate quantum-mechanical scale � /�GL in Eq.
�29�, where �GL=�� /8kB�Tc�0�−T� is the characteristic re-
laxation rate of nonequilibrium excitations in superconduct-
ors within the time-dependent Ginzburg-Landau theory. This
gives us the rate for quantum-mechanical-phase slips68

�QPS = �QPS exp�−
�FPS�T,Ib�

�/�GL
�sinh
−

�FPS

2�/�GL
� �30�

with the QPS attempt frequency �QPS.

D. Discussion

The models presented above are candidates to describe
the measured fluctuation rates. The key quantity is always
the necessary excitation energy Eexc that enters the corre-
sponding Boltzmann factor. In Fig. 6 we have plotted these
energies for all three models as a function of the reduced bias
current Ib / Ic,e for sample 1 with the narrowest conduction
path w�50 nm because the sample with the smallest spatial
dimensions of this study should be most sensitive to fluctua-
tions, either of thermal or of quantum-mechanical nature.
The excitation energies were calculated using Eqs. �15�, �22�,
and �27�, the formalism introduced in the previous sections,
and the parameters from Table I. In the relevant current
range, i.e., Ib / Ic,e�0.7, the excitation energies for the un-
binding of VAPs and vortices hopping over the edge barrier
are comparable to each other whereas those for phase-slip
phenomena are significantly larger, thereby leading to an at
least two orders of magnitude lower thermodynamic prob-
ability for the occurrence of such a fluctuation event. The

results for the other samples are qualitatively similar. While
the excitation energies for all models increase with increas-
ing width, the values for phase-slip events increase even
faster as compared to the other mechanisms, which makes
them even less likely to occur in wider samples.

Using the excitation energies from Fig. 6 we have calcu-
lated the fluctuation rates and plotted them on a logarithmic
scale in Fig. 7 as a function of the reduced bias current. For
each fluctuation model, the rates have been normalized to
unity for Ib / Ic,e=1, and the quantum tunneling of vortices
through the edge barrier as well as quantum phase slips have
been included. Again, the unbinding of VAPs and the hop-
ping of vortices over the edge barrier are very similar to each
other but the other fluctuation mechanisms show a distinc-
tively different current dependence. If we compare these the-
oretical current dependencies with the experimental data
shown in Fig. 4, only the unbinding of VAPs and vortices
hopping over the edge barrier exhibit a current dependence
that is compatible with the experimental data.

Before we continue the discussion of these two promising
fluctuation mechanisms, we want to briefly comment on why
the other proposed models are not relevant for explaining the
measured fluctuation rates. The lowest fluctuation rates come
from the quantum tunneling of vortices through the edge
barrier �see Fig. 7�. One can define a crossover temperature
Tco below which the probability for quantum tunneling be-
comes larger than the probability for a thermally activated
nucleation and jump over the edge barrier by equating the
exponential terms from Eqs. �23� and �24�. The correspond-
ing results for Ib=0 are listed in Table II. These crossover
temperatures are all well below 1 K, which is much lower
than the operational temperature in our experiments. Tunnel-
ing of vortices in the present structures becomes therefore
only relevant at sub-Kelvin temperatures.

The fact that thermal or quantum phase slips can be ex-
cluded as the cause of the observed fluctuation rates is a
direct consequence of the relatively large strip width w as

FIG. 6. �Color online� Excitation energies Eexc in units of kB for
the different models describing the fluctuation rates, calculated for
the sample with the narrowest conduction path. For wider conduc-
tion paths, the energy scales are larger �not shown�.

FIG. 7. �Color online� Normalized fluctuation rates as calculated
within the theoretical frameworks of Sec. IV. The quantum and
thermally activated phase-slip models show a current dependence of
the normalized fluctuation rate that drops too quickly with decreas-
ing current for explaining our measured data shown in Fig. 4.
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compared to the coherence length �, which leads to high
excitation energies. Even for sample 1, this width is by a
factor of approximately ten times larger than ��T�. The
physical validity of the phase-slip approach to the present
situation has to be questioned in general, however, since it
had been developed for superconducting wires, where both
transverse dimensions are on the order of the coherence
length or smaller. Nevertheless, it is very interesting to note
that in case of phase slips, the rate of quantum-mediated
fluctuations is larger than the thermally induced ones, just as
the theory of QPS predicts.3 Furthermore, we note that our
results are in line with numerical calculations,20 showing that
vortex-based thermal fluctuations should indeed dominate as
long as Likharev’s criterion w�4.4� is fulfilled.

We finally tried to fit the two thermally excited vortex
models �unbinding of VAPs and vortices hopping over the
edge barrier� to the experimental data in an attempt to dis-
tinguish between the two scenarios. In the vortex-hopping
model, we could independently determine all physical pa-
rameters, leaving only the attempt rate and the device tem-
perature as free fit parameters. This procedure yielded quite
satisfactory results of 5.7, 5.7, and 4.5 K for the samples 1, 2,
and 3, respectively. The temperature deviation of sample 3
might be explained by a better thermal isolation of the cry-
ostat during this particular measurement. Another explana-
tion might be a reduced barrier height of sample 1 and 2,
which is equivalent to a higher model temperature. Such a
reduction could be caused, e.g., by edge inhomogeneities or
structural damage during device fabrication. Nevertheless as
mentioned above, the physical validity of Eq. �20� is ques-
tionable at positions close to the edge of the strip. Accord-
ingly, the height of the barrier and therefore the fluctuation
rate depends on the position for which the Gibbs free energy
of the vortex is set to zero. For example, setting G�T , Ib ,x
=��T��=0 leads to model temperatures about one Kelvin less
than the ones given above. The point for which the free
energy of the vortex is zero near the strip edge might itself
depend on the strip width.

For the thermal VAP unbinding scenario the device tem-
peratures determined within the vortex-hopping model were
used. Besides the attempt frequency �VAP the polarizability
of a VAP 	 remained as the only free parameter. Best fits
were obtained for 	�1, �see Table II�. The apparent discrep-
ancy between this value and the rather high 	BKT obtained
from fitting the resistance data has its origin in different
physical conditions for the corresponding experiments. The
transport measurements were carried out at very low bias
currents, thus probing large VAPs with a high polarizability.
The fluctuation rates, however, were measured at currents
close to the critical current and therefore probing VAPs close
to the minimum separation r�2.6·��T� and hence with low
polarizability 	�1.

The best resulting fits according to both relevant models
are plotted in Fig. 4. Within the accuracy of our data it is not
possible to decide in favor of any of the two models. Based

on the calculated excitation energies alone, we would expect
that vortices are frequently thermally excited over the edge
barrier. However, within the VAP unbinding model we can
naturally explain the tail-like structure at relatively low cur-
rents observed in the fluctuation rates of the samples with the
sub-100-nm-wide conduction paths. Due to the small width
of the conduction paths we can expect a finite density of
thermally unbound VAPs even in the absence of a bias cur-
rent. The estimated corresponding contribution to the fluc-
tuation rate is also shown in Fig. 4 as dotted lines. For the
sample with the widest conduction path, the density of ther-
mally unbound vortices seems to be so low that the resulting
fluctuation rate is beyond the sensitivity of the present ex-
periment. This might explain the absence of the tail-like
structure for sample 3. We want to mention, however, that
this low-frequency tail in ��I� is very sensitive to electronic
noise in the measurement circuit. The present data could only
be obtained after careful elimination of noise sources and we
can therefore not exclude that a further reduction in this
noise would suppress the tail-like structures in Fig. 4 for the
samples with the sub-100-nm-wide conduction paths.

V. CONCLUSIONS

We have presented an extensive study of current-induced
fluctuation phenomena in superconducting nanoscaled mean-
der structures at temperatures well below the superconduct-
ing transition. Fluctuation rates were studied as a function of
the applied bias current in three samples with different strip
widths. In such structures, fluctuations of sufficient energy
lead to measurable voltage pulses with picosecond rise times
and nanosecond duration that can be counted with a
threshold-level voltage pulse counter.

Using established theoretical models and taking into ac-
count the experimentally determined current dependence of
the energy gap � we aimed to model our experimental data.
At the operating temperature of T�5.5 K and for bias cur-
rents Ib / Ic,e�0.7, thermally activated or quantum-
mechanical-phase slips as well as the quantum-mechanical
tunneling of vortices through the edge barrier, can be clearly
excluded as the dominant mechanism leading to fluctuation-
induced voltage transients.

The most likely explanation of the observed fluctuation
rates involves thermally activated vortices moving across the
strips, either as unbound vortex-antivortex pairs or as single
vortices overcoming the edge barrier but the available data
do not allow us to finally decide in favor of one of the sce-
narios. A measurement of the temperature dependence of the
fluctuation rates might resolve this interesting question.
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